Mechanisms of Adaptive Spatial Integration in a Neural Model of Cortical Motion Processing
نویسندگان
چکیده
In visual cortex information is processed along a cascade of neural mechanisms that pool activations from the surround with spatially increasing receptive fields. Watching a scenery of multiple moving objects leads to object boundaries on the retina defined by discontinuities in feature domains such as luminance or velocities. Spatial integration across the boundaries mixes distinct sources of input signals and leads to unreliable measurements. Previous work [6] proposed a luminance-gated motion integration mechanism, which does not account for the presence of discontinuities in other feature domains. Here, we propose a biologically inspired model that utilizes the low and intermediate stages of cortical motion processing, namely V1, MT and MSTl, to detect motion by locally adapting spatial integration fields depending on motion contrast. This mechanism generalizes the concept of bilateral filtering proposed for anisotropic smoothing in image restoration in computer vision.
منابع مشابه
Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کاملAdaptive temporal integration of motion in direction-selective neurons in macaque visual cortex.
Direction-selective neurons in the primary visual cortex (V1) and the extrastriate motion area MT/V5 constitute a critical channel that links early cortical mechanisms of spatiotemporal integration to downstream signals that underlie motion perception. We studied how temporal integration in direction-selective cells depends on speed, spatial frequency (SF), and contrast using randomly moving si...
متن کاملIntegration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملCortical dynamics of form and motion integration: Persistence, apparent motion, and illusory contours
How does the visual system generate percepts of moving forms? How does this happen when the forms are emergent percepts, such as illusory contours or segregated textures, and the motion percept is apparent motion between the emergent forms? We develop a neural model of form-motion interactions to explain and simulate parametric properties of psychophysical motion data and to make predictions ab...
متن کاملOptic Flow Integration at Multiple Spatial Frequencies - Neural Mechanism and Algorithm
In this work we present an iterative multi-scale algorithm for motion estimation that follows mechanisms of motion processing in the human brain. Keeping the properties of a previously presented neural model of cortical motion integration we created a computationally fast algorithmic implementation of the model. The novel contribution is the extension of the algorithm to operate on multiple sca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011